Fall Armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), poses a significant risk to global food and income security by attacking various crops, particularly maize. Early detection and management of FAW infestation are crucial for mitigating its impact on crop yields. This study investigated the effect of FAW infestation on the spectral signature of maize fields and classified infestation severity in Bangladesh using Sentinel-2 satellite imagery and Random Forest (RF) classification. Field observations on FAW infestation severity (none, moderate, and severe), collected by the Bangladesh Department of Agricultural Extension during 2019 and 2020, were used to train the RF classifier. Six thousand nine hundred ninety-eight observations were collected from 579 maize fields through weekly scouting. The Kruskal-Wallis test and Dunn’s post-hoc test were applied to identify the most significant spectral bands (P < 0.05) for detecting FAW incidence and severity across different maize growth stages. The results demonstrated that the spectral reflectance from Sentinel-2 bands varied significantly among different classes of FAW infestation, with noticeable differences observed during the early developmental stages of maize (vegetative growth stages 3 to 8). RF identified nine spectral bands and two spectral vegetation indices as important for FAW infestation discrimination. The RF classifier was evaluated using five-fold cross-validation, achieving an overall accuracy between 74 % and 84 %. The independent test set’s accuracy ranged from 72 % to 82 %. The mean multiclass AUC ranged from 0.83 to 0.95. Moreover, the results demonstrated the feasibility of detecting the severity of FAW infestation using temporal Sentinel-2 data and machine learning techniques. These findings underscore the potential of remote sensing and machine learning techniques for effectively monitoring and managing crop pests. The study provides valuable insights for classifying FAW infestation using high-resolution multitemporal data.